Effect of A and B Metal Ion Site Occupancy on Conformational Changes in an RB69 DNA Polymerase Ternary Complex [(2009) *Biochemistry* 48, 2075. DOI: bi801627h]. Mina Wang, Harold R. Lee, and William Konigsberg*

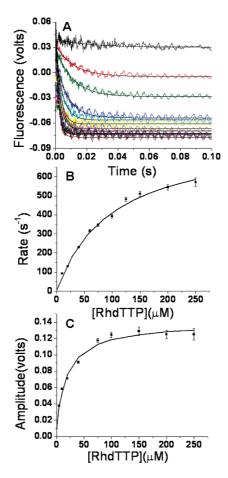


FIGURE 8: Stopped-flow fluorescence scans of RB69 pol:dP/T with increasing [Rh·dTTP]. For the dP/T sequence, see Figure 2, A2. (A) One syringe contained 800 nM DNA and 4 μ M RB69 pol in 50 mM MOPS buffer (pH 7) at 24 °C. The other syringe contained varying [Rh·dTTP] (0, 10, 20, 40, 80, 120, 150, 200, 250, 300, 400, and $500 \mu M$ from top to bottom) in MOPS buffer. Both syringes contained 2 mM CaCl₂. The fluorescence signal versus time fit a single exponential equation. The scans are shown in different colors for different [Rh·dTTP], and the fitting curves are shown in black. (B) Rates from the single exponential versus [Rh·dTTP] fit a hyperbolic equation with a $k_{\rm max}$ of 812 (\pm 38.9) s⁻¹, a $K_{\rm dr}^{\rm app}$ of 100 (\pm 18.3) $\mu \rm M$ and Y-intercept of 7 (\pm 22) s⁻¹. (C) The amplitude change for the fluorescence quench versus [Rh·dTTP] also fit a hyperbolic equation with a K_{da}^{app} of 19.7 (±3.4) μ M.

DOI: 10.1021/bi100278h Published on Web 03/04/2010